68 research outputs found

    Interior feedback stabilization of wave equations with dynamic boundary delay

    Get PDF
    In this paper we consider an interior stabilization problem for the wave equation with dynamic boundary delay.We prove some stability results under the choice of damping operator. The proof of the main result is based on a frequency domain method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent

    Determining a boundary coefficient in a dissipative wave equation: Uniqueness and directional lipschitz stability

    Full text link
    We are concerned with the problem of determining the damping boundary coefficient appearing in a dissipative wave equation from a single boundary measurement. We prove that the uniqueness holds at the origin provided that the initial condition is appropriately chosen. We show that the choice of the initial condition leading to uniqueness is related to a fine version of unique continuation property for elliptic operators. We also establish a Lipschitz directional stability estimate at the origin, which is obtained by a linearization process

    Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler-Bernoulli beam and heat equations

    Full text link
    We are concerned with the inverse problem of determining both the potential and the damping coefficient in a dissipative wave equation from boundary measurements. We establish stability estimates of logarithmic type when the measurements are given by the operator who maps the initial condition to Neumann boundary trace of the solution of the corresponding initial-boundary value problem. We build a method combining an observability inequality together with a spectral decomposition. We also apply this method to a clamped Euler-Bernoulli beam equation. Finally, we indicate how the present approach can be adapted to a heat equation
    corecore